.jpeg)
FACTS, TIPS AND TECHNIQUES
TIPS, TECHNIQUES, TRICKS - RECORDING - MIX - MASTERING
HOW TO RECORD ACOUSTIC GUITAR
Its a 3 microphone technique
- One mic right by my ear with the diaphragm facing towards the acoustic guitar hole. This captures the sound exactly how i hear it. I like to use an LDC mic for this (LDC = large diaphragm condenser)
- The 2nd microphone will be placed by the 12th fret, about 2 to 6 inches away from it. I like to use a dynamic mic, like Sure SM57. Everyone has one of these mic's laying around. Not only do they make good hammers to nail your setlist down to the stage floor, but they record great vocals, guitar, and snare tracks as well.
- The 3rd Microphone will be placed by the sound hole, off-axis about 6 to 12 inches away. I like to use an LDC mic for this as well.
- Play around with room position and make sure you find the best position in your room to get you the best sound. You do not want to be too close to any walls or you may get some unintended room reflections in your recording.
- You also need to check each microphone for phase issues before recording the acoustic guitar.
- Record each mic on its own mono track. Do not combine all the mics onto one track.
- When you are done recording, you will mix all 3 mono tracks until you get your desired acoustic guitar sound.
WHAT IS THE BEST DB LEVEL FOR MIXING
WHAT ARE THE FREQUENCY RANGE GROUPS FOR AUDIO
The Basic Categories include:Highs - anything above 3.5kHzMids - everything between 250Hz and 3.5kHzLows - 250Hz and everything below it
More Specific Categories Include:Brilliance - everything above 6kHzPresence - between 3.5 to 6kHzUpper Mid-range - in the middle of 1.5 to 3.5kHzLower Mid-range - between 250Hz to 1.5kHzBass - around 60 to 250HzSub Bass - below 60Hz is your sub-bass
WHAT IS AN AUDIO COMPRESSOR AND HOW IT WORKS
A limiter is a compressor that has its ratio settings greater or equal to 10:1. At a 10:1 ratio, that's when a compressor stops compressing and starts limiting. So anything below a ratio setting of 10:1 is compressing and anything above that ratio is limiting. That's why when you see many compressors, it also says limiter. The only difference is the ratio setting and when limiting, your ratio may be higher and your attack may be faster.
We need compressors for a wide variety of things. It protects against overly loud peaks that can clip the audio signal. It also evens out the volume changes in an instrument created by the artist playing it or singing it. There are also compressors that can control each frequency band individually. There called multi-band compressors. Multi-band compressors are used mainly for mastering, because of the control you get with each band.
The 8 Parameters That A Compressor Can Have
2. Attack Time Controls the amount of time it takes the compressor to turn down the signal after it passes the threshold. The attack time needs to be adjusted just right. If it is set too fast, then the compressor can turn down the transients and that can cause the instrument or song to lose its life. It can also affect vocals if it's set too fast by making the 't" and 's' sounds disappear. The opposite can happen if the attack time is set too slow. It will exaggerate the 't' and 's' sounds because it will pass through uncompressed because the attack time was too slow. So you have to be careful when setting up the compressor for vocals.
3. Release Time Is the time it takes the compressor to let go or turn the affected signal back up when It gets below the threshold. Fast release times work very well with the fast attack times and slow release times work very well with slow attack times. Release settings are crucial because if it's set too fast, it can boost noise that is between the notes and if it's set too low, it can compress a quieter note that follows the note the was above the threshold.
4. Output Level Makes up for the reduction of gain that the VCA causes. If the signal was reduced by 5dB, the output level can boost the signal back to its original level.
5. The Ratio Determines how much compression is applied to a signal after it goes over the threshold setting. The ratio will tell how much gain reduction is going to be applied when the compressor starts to work.An example: If you set a compressor's threshold at -10dB and a 3:1 ratio. If you have a somewhat constant audio signal the signal at -1dB will become compressed so it can only reach -7dB.
The ratio determines how extreme the VCA action will be. The ratio is a comparison between what goes through the threshold and the output of the VCA. The first number of the ratio will indicate the increase of how much dB will result in 1dB of increased output. The higher the ratio is, the more compression there is. If you adjust the threshold so the loudest note of the song passes the threshold by 3dB and the ratio is set to 3:1, the 3dB peak is reduced to a 1dB peak and the gain is then reduced by 2dB.
6. Hard Knee Compression and Soft Knee CompressionThe Knee setting tells the compressor how to react to a signal after it passes the threshold. The knee settings determine how fast and how severe the compressor reacts to the signal that crosses the threshold.
- With Soft Knee compression, the audio signal is gradually decreased throughout the first 4 to 6dB (give or take) of gain reduction when it passes the threshold.
- With Hard Knee compression the audio signal is reduced rapidly and very severely in amplitude.
- Both knee settings are dependent on the attack, release, ratio, and threshold settings.
- Soft knee compression/limiting is better suited for ratios at a high setting.
- Hard knee compression/limiting is really good for when the audio has a lot of transient peaks. The hard knee is for the extreme and immediate response.
- Hard knee limiting is great when you need 100% absolute control of your peaks, like peak limiting
- The soft knee is more forgiving than hard knee compression/limiting
8. Gain ReductionGain reduction is the amount that was turned down by the VCA after it crossed the threshold.The gain reduction can usually be seen and measured with a VU meter or LEDs inside the compressor/limiter.For a VU meter, 0 VU indicates no gain reduction.For LED, there is usually a scale from right to left. Each LED can represent two or more dB of the audio signals gain reduction. Effects From Using A Compressor:When using a compressor during tracking (Use hardware compressors only, if you're recording into a program like pro tools or sonar) it will allow the engineer to record the track at a higher level than normal. Like if the compressor decreases your signal level by 4dB on the hottest parts, the entire tack can be recorded 4dB higher to make up the reduced gain. This will make the soft passages of the track hotter as the loud passages will be least affected. While the compressors really control the loud passages, the final result is an increase in the soft passage levels.
A lead vocal track that is compressed will sound more upfront in the mix, only when compression is used correctly.Bass guitars are almost always compressed. Because of the low frequencies, it possesses. If not tamed, the low frequencies will saturate the overall mix level and this can make your song level artificially hot. When the bass guitar is compressed correctly, the low will be tamed and your mix can be mixed and mastered at a proper level.
The pumping effect is an effect of a compressor when the level control of reducing the gain as the amplitude passes the threshold. Then it turns it back up when the signal falls below the threshold.The breathing effect is the same as the pumping effect, but the breathing effect is heard with high-frequency airy sounds only.
Multi-Band Compressors
- They divide each audio signal into multiple frequency ranges. Each frequency range (band) is processed separately.
- The bands that define each cross over point of each of the frequency ranges are adjustable most of the time.
- Each band is controlled separately by the user. Meaning you can have a different threshold, ratio, attack, release, and gain settings for each band.
- There are usually 5 bands in a multi-band compressor. There are some with 4 bands as well.
- Multi-band compressors are mostly used in the mastering process, to fix the mixes problem areas.
DIFFERENT TYPES OF EQ
- To boost (enhance) part of a tone we want to hear more
- To cut part of a tone we do not want to hear
There Are 3 Types Of EQ
1.) Semi-Parametric EQ, also called sweepable EQ
- Each sweepable band has 2 controls. A frequency selector and a cut and boost.
- With this EQ, you can zero in on the exact frequency that needs to be cut or boosted.
- This EQ is good for finding the right frequency that brings life into your instrument, cause you can set a cut or boost and then sweep (dial-in) the frequency that makes that track shine.
- The sweepable EQ in mixers will usually have 3 bands on each channel. They are lows, highs, and minds.
2.) Parametric EQ
- These are the most popular of the EQ's because of its flexibility.
- It works just like the semi-parametric EQ, but it has one more control.
- The Q stands for width and it controls the bandwidth of the cut and boost.
- With the addition of the Q, this EQ is the most precise of them all.
- The Q set at 1.0 means the cut or boost will affect 1 1/3 octaves from the centered band. If the Q is set at 3, it will boost or cut 3 octaves from the centered band.
3. Graphic EQ
- This is the most visual of them all, hence the name.
- These EQ's comprise of sliders that represent the frequency spectrum (20Hz to 20kHz and sometimes they go beyond).
- These EQ's are more commonly used in live performances and for known tuning problems with your mixing environment.
- These EQ's can be used to cut and boost specific frequencies.
- They have a predetermined Q setting
- A 10 band graphic EQ has a Q (bandwidth) of one octave.
- A 31 band graphic EQ has a Q of 1/3 of an octave.
Different Kinds of Filters
1. High Pass Filter
- A high pass filter cuts the lows frequencies, as it lets the high frequencies pass through unaffected.
- You can specify the frequency at which the cut begins.
- The cutoff frequency is the frequency that you specified the cut to begin at.
- The rate of cut is called the slope and the slope is calibrated in dB per octave.
- Normal cuts are at a rate between 6 and 12dB per octave
- This filter is great for getting rid of the 60-cycle hum and the high pass filter is great for reducing background rumbles in your environment, like street noise, a/c that may bleed into a vocal mic or any other mic.
- Most high pass filters have a sweepable frequency selector and is superb at getting rid of any unwanted or unused low frequencies.
2. Low Pass Filter
- The low pass filter cuts the high frequencies, as the low frequencies pass unaffected.
- Uses for this filter can be for getting rid of a high buzzing guitar amp, getting rid of string noise on a bass guitar, and to help minimize leakage onto drum toms and cymbal tracks.
- They also use a sweepable frequency selector to define its cuts.
3. Bandpass Filter
- The bandpass filter lets the desired frequency range pass through unaffected. For example, all the frequencies below and above the desired frequency range will be filtered out and everything between will pass unaffected.
- The bandpass filter is really the high pass and the low pass filter combined together as one.
4. Notch filter
- This filter is used to find and then get rid of any problem frequencies.
- The notch filters have a narrow bandwidth and most of the time they are sweepable.
- An example of the use of this filter is to set up a peak or boost of a set frequency and then sweep the boosted or cut frequency until the problem sound goes away.
5. Peaking filter
- The peaking filter cuts or boost a band (frequency) in the shape of a bell curve. The peak that is made is the center defining frequency.
- These filters are the most widely used by far.
6. Shelving EQ
- The shelving EQ will leave all the frequencies flat and then it will turn all frequencies above or below that point.
- These filters are used for adding air to a mix by sweeping the cutoff frequency (from 10KHz and above) and then raise the shelf to your desired effect. A little goes a long way with this filter.
Q Setting Chart
Q Setting Bandwidth Octave Calculations
- 0.7 = 2 Octaves
- 1.0 = 1 1/3 Octaves
- 1.4 = 1 Octave
- 2.8 = 1/2 Octave
Equalization is fundamental for getting your tracks to blend together
- Evaluate each and every frequency range in every single track and then make adjustments that will build a smooth and cohesive sound that blends well together.
- Avoid cutting and boosting all your tracks at the same frequency range. You need to create EQ settings that work well together. If every track is boosted and cut at the same frequency range, your song will most likely sound very harsh and your tracks will be competing for the same frequency ranges. This will end up in instruments masking other instruments.
Complimentary EQ
Linear Phase EQ
HOW TO RECORD A GREAT VOCAL TRACK
You need to determine what the best sounding signal path is for that specific vocalist:This is the most time consuming overly repetitious task. But in the end, when you find the right gear and positioning that fits your vocalist. Your payoff will be priceless!
Mic placement is important in getting that great vocal sound
The Proximity Effect
The Mic Of Choice
- The Mic of choice for most singers is a cardioid condenser mic and a good starting point for this mic is about six to eight inches away from the mic capsule. If the voice sounds too thin, then you move the singer up a bit to use the proximity effect. But be very careful. Moving only an inch or so will increase the bass and fullness a lot. If the sound is too big, then move the singer back a bit. It's a balancing act.
- If you're using an omnidirectional mic or an omnidirectional pattern setting, there will be no proximity effect. Moving the singer back and forth will only create distance and the bass frequencies will not be enhanced as the singer moves toward the mic. The Omni pattern is a good mic to use if the singer cannot stay still and/or is inexperienced in vocal recording. But this mic has its fallbacks since it picks up all directions equally. You need a very quiet room to use this mic and a room that is acoustically treated.
- The effects of a condenser mic on-axis and off-axis with the singer's mouth are very important. When a condenser mic is on-axis to the singer's mouth, the sound is harsher and brighter. When the mic is off-axis to the singer's mouth, the sound gets a bit warmer and darker. This is due to the sound hitting the mic capsule. The mic capsule captures the singer's chest resonance and by changing the axis of the capsule, you change the sound that the mic records. An off-axis tilt towards the ceiling can help prevent popping and sibilant.
- Now that you are aware that the slightest movements and the slightest change of positions can alter and change the sound dramatically. You should make notes on the distance and mic position relative to the singer, in case you need to Punch In.
Be Aware Of Plosives
Things That Can Ruin A Vocal Take
- Jewelry (necklaces, bracelets) can make a lot of noise. If a singer cannot take them off due to some unknown reason, you can wrap a towel around it and put some tape on it. Just as long as it doesn't move.
- Early reflections from a music stand that is too close to the mic. Try to avoid metal music stands, as they can cause early reflections more than a fold-able music stand. Yes! Cheaper is better when it comes to music stands. Save when you can and this is where you can save some money.
- Avoid wearing shirts with buttons and other things that could be noisy. A nice plain t-shirt is good.
- Always have water close and available for the singer. A dry mouth can cause lip-smacking and other noises.
Record in 24bit. This goes for vocals and everything else
- When recording in 24bit, there is no need to record hot. Recording hot could get you in trouble. One small clip can ruin your vocal take.
- Record your vocals between -20dB and -6dB. Those levels are fine for 24bit
- With 16bit, you have 65,536 possible levels
- With 24bit, you have 16,777,216 levels
- So in 24bit, your audio has more room in the digital realm
- You do not have to record as hot in 24bit as you do in 16bit because of the noise floor. In 24bit you can record at a lower level while staying above the noise floor. Meaning you can record at lower levels because of the more headroom 24bit gives you.
Double Tracking Vocals
- Over Pronounce your vowels when recording your vocals. This will give your performance more emotion. The consonants should take a non-predominant role and let the vowels give shape to your words as you sing. This will lead to a great flow with the music your vocals are mixed in with.
- It will make the vocal part sound fuller and more powerful. This greatly depends on the singer's skill in reproducing the exact vocal take that he/she performed before.
- During the 2nd take, you can change the singer's distance from the mic. For example, if the singer was 7 inches away from the mic on its first take, then record the second take 14 inches away from the mic.
- You can even try a 3rd pass at it.
Tips For Mixing Vocal Tracks
- An Exciter is a great tool that adds clarity to your vocal.
- EQ - If you used proper mic choice and technique, your vocals may not need any EQ. Except for maybe a high pass filter to cut the lows. Vocals, normally do not use anything below 60Hz to 100Hz. When using EQ on vocal tracks, try not to cut and boost dramatically, A little goes a long way, especially if you want it to translate onto different sound systems. To add a bit of clarity to your vocals, try boosting between 4 - 5kHz
- Delay - A simple slapback delay can do wonders to your vocal track when set up in time with 8th note triplets.
Compression tips for vocals
- Inconsistent vocal levels - The settings for compression depends on how consistent the vocal track is. If the vocal track is inconsistent, you will need a fast attack time with medium release time and a ratio setting of 6:1 to 10:1. Your threshold is adjusted for a gain reduction on the loudest parts only. So most parts will go through the compressor unaffected. You only want to even out the volume level of the entire vocal track without doing any extreme compression.
- Breathy vocal effect - This creates a whispery and highly present vocal. Set the attack time very fast, the release time should be moderate, the ratio should be between 5:1 - 10:1 and the threshold level should be between 7 to 21dB below the peak level. You'll also need to add a bit of reverb to achieve this effect. Note that you will definitely need to use a pop filter with these vocals, as the intense compression will overly exaggerate lip smack, breath sounds, and other artifacts.
- Smooth vocal effect - This one is easy. Set your ratio between 2:1 and 4:1 with a moderately fast attack time, a slow-release time, and the threshold set from 2 to 6dB below the highest peak level (like everything, adjust to taste). Since this is a very low compression you may have some high peaks that cannot be tamed. To solve this, run it into a limiter after the compressor with a fast attack and fast release time and set the threshold to limit only those pesky peaks.
WHAT IS A DE-ESSER
- The de-esser is used to get rid of overly exaggerated transients that are caused by overly compressing or poor mic techniques.
- The de-esser is good for getting rid of these transients since it reacts very fast to them.
- A de-esser works in the frequency range between 3kHz to 6 kHz. Some can be set to work below and above those ranges.
- Compressors can be set up and used as a de-esser. Simply set the attack to a fast msec time and then patch the side chain as the trigger for the processor. Then you adjust the threshold so the gain reduction starts when there is a transient problem.
GATES VS EXPANDERS
Gates
- A gate opens and closes when the signal passes across the threshold.
- The VCA in a Gate/Expander will turn everything down below the threshold and the VCA in a compressor will turn everything down above the threshold.
- When the gate closes behind the sound, the gate doesn't open back up until the audio signal is above the threshold.
- Gates are good for getting rid of ambient room noise. For example, a noisy electric guitar.
- Gates can be used as effects. They are commonly used on drum tracks to give it that 80's Phil Collins snare drum sound (Just a reverb and a gate.)
Expanders
- An expander expands the dynamic range. It makes a bigger difference between the softer and louder parts by turning the softer parts down.
- The range can be adjusted so the VCA will only turn the signal down part of the way when it gets below the threshold
- An expander will turn the noise down, rather than turning it off, as a gate does.
- Expanders are smoother in their level changes.
There are 2 kinds of expanders, upward and downward expanders
- Upward expanders are not common and they tend to be too noisy.
- Downward expanders are the most commonly used.
BALANCED AND UNBALANCED CABLES EXPLAINED
There are 3 terms when talking about balanced and unbalanced:
- Lead: It's just another term for the wire.
- Hot Lead: It's the wire that carries the sound from the magnetic pickup to the amplifier's input.
- Braided shield: This surrounds the wire and shields it from electrostatic noises and other interference's by diffusing, absorbing, or rejecting it.
- Most balanced cables have 2 separate leads twisted together though out the cable. Both of the leads carry the audio signal and connect to the ground and the braided shield connector.
- XLR and the 1/4 tip ring sleeve plug are your most common balanced cable connectors
REVERB TIPS
Reflections
Different Sounds In Reverbs
- Room Reverb settings mimic the many types of rooms that are smaller than chamber and hall sounds.
- Plate Reverb imitates an actual plate reverb. Plate verbs are the brightest sounding of all reverbs. A real plate reverb is made from an actual sheet of metal that is suspended in a box. Then you attach a speaker to the plate and this makes the plate vibrate and it gives the plate reverb effect. It's easy and fun to make your own plate reverb. You should try it someday.
- Hall Reverb are sounds from a concert hall. They tend to be the richest and smoothest sounding reverbs. They consist of long delay times that blend together for that smooth decay. Hall reverbs usually have a decay of over 2 seconds.
- Chamber Reverb imitates an echo chamber (acoustic reverberation chamber). These chambers consist of large rooms with hard surfaces. The chamber sound is made when you play music into the room with some hi-fidelity speakers. Then you place a mic in that room and the mic is then patched into the mixer's effects return. The sound of the chamber reverb is like the hall reverb, but the chamber has more mid and high-frequency sounds.
- Reverse Reverb is just a reverb that is backwards. It turns around the reverb when the sound stops swelling
- Gated Reverb makes a sound for a period of time that is defined by the user and then it stops very quickly. This creates a very large sound that doesn't override the mix. Are you thinking of Phil Collins right now? He was known to use a gated reverb back in his time.
- Spring Reverb is a combination of electrical and mechanical devices that use the sound properties of a metal spring that imitates reverberation.
Parameters of the Reverb
- Pre Delay is the delay in time that happens before you hear the reverb. It's the sound we hear dry (without reverb) for a period of time and then the reverb starts to come along after the defined period of time. This can make them sound more upfront while adding richness and filling in the holes. Pre Delay setting can be from a few milliseconds to one or 2 seconds long
- Diffusion controls the space between the reflections.
- Decay Time is the time it takes for the reverb to fade away. Normal decay time can be from 1/10 of a second to upwards of 99 seconds.
- Density controls the initial short delay times. Low-density settings are good for strings. Anything that needs to sound smooth. High-density settings work great on drums and percussion sounds.
- Wet/Dry percentage is exactly what it says. This controls the amount of the processed (wet) signal and the amount of the unaffected (dry) signal. If you set the reverb on a bus, then in most cases you will have it set to 100% wet, because you control the amount of the processed signal with the send level.
Impulse Response Reverbs (IRR)
- They accurately simulate the sampled acoustics of real spaces. For example, halls, rooms, chambers, and just about any other room you can think of.
- It models an acoustic environment in the digital domain and this modeled sound is called an impulse response.
- Its made by firing a starter pistol or by playing a sine wave from a speaker into the room its simulating. The decay from the reverberation is then recorded into a digital audio file. This can then be used to re-create the acoustics of any actual space. That's cool how they make it!
PROPER DISTANCE FOR STUDIO MONITORS
The center of the triangle should be of equal distance from each wall. At times, this may still not be optimal for your room. Room acoustics play a big role in creating and reducing problems like the sound being too boomy, bass, or muddy. Your high or low end may be too loud or too soft. So you may need to move your speaker placement around a bit before you settle on the right location.
HOW TO GET A BIG GUITAR SOUND
You first need to start with a decent sounding guitar tone. If the distortion sounds thin and buzzy, then you need to fix that first and foremost. It's much easier to get a big guitar sound from a sound source that sounds good, to begin with. Crap in equals craps out. No matter what you do with it.The use of short delays is good for widening up the guitar sound across the stereo fields. This technique is very effective.
Your tone needs to be very broad with extended high and low frequencies. This is a must for a huge sound.Your depth is very important. Long delays and reverb can make the guitar sound like it's being listened to in a large room. A slapback delay defines the size of the room that the guitar is placed in. For example, a delay of 500ms will create the illusion that the guitar is being listened to in a space that is 500 feet long. This is because sound travels at a speed of one foot per millisecond.
Compression is very important. I don't have a setting, because you need to use your ears for this. Each guitar/instrument/song will need different settings. But remember that compression helps keep the guitar consistent in the mix space. So use compression for this.Try low tuning your guitar. Record one take with standard tuning and one take with low tuning and combine them both for one huge guitar sound.Double, triple, quadruple track guitar takes. Pan them far left and far right. This is by far the best way to achieve a huge guitar sound.
You can also clone/copy the guitar track onto a new track and then transpose the entire track down an octave and combine both tracks for a huge sound.
- Place one mic close to your amp's speaker and compress that signal with an 8:1 ratio setting, a fast attack, a semi-fast release, and a threshold of 6 to 20dB below the highest peak of the audio level. This high compression will cause your guitar sound to pump.
- Place the 2nd mic and place it 5 to 9 feet away (room mic) from the amp's speaker.
- Compress this signal with a ratio of 5:1, a medium attack, a slow-release, and the threshold is the same as the other one, between 6 to 20dB below the highest peak.
- Combine both sounds together and using the room mic just enough to give it that thick and chunky sound.
BASS GUITAR RECORDING TIPS
1. Direct Recording
2. Mic Recording
3. Combining DI and Mic Recording
Compressor Settings
Distortion
Equalization
- The fundamental bass frequencies are between 125 to 400Hz and boosting these can bring out more of the bass lines in the mix. The harmonics for the bass are from 1.5 to 3kHz. Boosting these frequencies will increase clarity and pluck.
- Boosting between 5 to 7kHz will increase the finger sound.
- Cutting between 40 and 50Hz will reduce the boom.
- Playing with a pick can add harmonics up to 4kHz and will make the bass sound brighter. Playing with your fingers will produce a more mellow sound
- Remember to never boost or cut the same frequencies for the bass guitar and kick drum. If you boost the bass guitar at 100Hz, 250Hz, and 3kHz, do not boost the kick drum in those same frequency ranges. If anything, you should cut those same frequency ranges.
LATENCY EXPLAINED
What Is Latency?
- It's the time difference between input and output of any digital audio workstation. It is caused by mathematical/algorithmic issues and by mechanical/physical procedures that occur mostly in software A/D and D/A converters, and when hard drives are used.
- Latency literally means the build-up of delays in an audio signal as it passes through the audio interface.
- Its measured in milliseconds.
- There is input latency, output latency, and round trip latency.
How Are You Affected By Latency
- You get latency when you monitor an audio signal through a computer's signal chain. If you ever heard a delayed sound when triggering a synth with a midi controller, you actually experienced latency.
- You can also get latency form using effects (VST / DX's) with hidden buffers. These effects are CPU intensive and usually meant to be used in the mastering stage of a project.
- You experience latency if your ASIO buffers are set to high or your WDM latency is set to high.
How To Solve Latency
- Your round trip latency should be less than 11 milliseconds if you do not want to experience latency.
- In ASIO driver mode, make sure your ASIO buffers are at its lowest settings. A setting of 32, 64, 128, or 192 should be acceptable. The Lower the better for this setting.
- In WDM driver mode, make sure you slide the latency slider all the way to the left. Millisecond settings of 5ms or less should be acceptable. Anything more may be noticeable.
- Make sure you go to your audio interface/sound card manufactures website and download & install the latest drivers for your operating system.
- Try both driver modes to see what works best for you and your PC.
Zero Latency Monitoring
SOUND CARD / AUDIO INTERFACES I RECOMMEND
These are my favorites: RME, MOTU, Lynx, Focusrite, Apogee. Antelope, Audient
- MOTU 16A 32x32 Thunderbolt / USB 2.0 Audio Interface with AVB
- RME Fireface UFX+ USB 3.0/Thunderbolt Audio Interface
- Apogee Ensemble Thunderbolt Audio Interface with Remote
- Lynx Aurora (n) 16-TB
- Focusrite Clarett 8Pre X 26x28 Thunderbolt Audio Interface
- Antelope Audio Discrete 8 Microphone Preamp and Thunderbolt/USB Interface
- Audient iD44
I am not affiliated or being paid to recommend these audio interfaces by any of these companies I listed above. These suggestions come from my own experiences throughout my years in the music industry.
TERMS FOR COMMUNICATING MUSICAL EXPRESSIONS
- Big - A huge and large sound that contains a wide range of frequencies with good clarity. It contains sparkling highs and punchy lows. It can also contain large roomed reverbs and nice reverbing effects.
- Cool - This really changes with certain types of musical styles. It's left up for interpretation. Music that has style and sophistication is considered cool by me.
- Dry - Without any reverbs or effects. Any unaffected recorded audio
- Edge - Upper frequencies that are abrasive when not used in moderation. These frequencies are from 3- 8kHz.
- Lush - This is widely used as a reference for strings. It sounds very smooth and has a pleasing texture to it.
- Moo - Rich sounding smooth and creamy lows.
- Open - No compression. This sound has a wide dynamic range. It sounds natural and can be heard through and seen through.
- Raunchy - A sound that does not include the very high and the very low frequencies. It can be described as a soulfully, gut-wrenching performance.
- Shimmer - Contains high frequency reverbs and decays.
- Sizzle/Sparkle - These are the upper-frequency sounds you hear from cymbals and bells. There are from 8 to 20kHz.
- Squawk - Accentuation of the mid-range frequencies. It can sound like a very small and cheap transistor radio.
- Squashed - Compressed very heavily. This sound has a very low dynamic range.
- Sweet- Lush and smooth sounding. Very pleasing to your ears. It can include some reverb, but not too much.
- Syrupy - A very sweet sound. It will have a lot of reverberation and the music can be very predictable.
- Thump - Low Frequencies that can be felt and heard. Thee between 80 to 150kHz.
- Transparent - A broad range of frequencies, but the sound isn't capable of covering the sound around it. Silence can be heard through this sound.
- Washy - A lot of reverb. It goes from one note to the other. Strings use this a lot.
- Wet - A sound that is close to 100% reverberation. It has none of the original sounds. This term is used in a lot of other effects as well.
MIDI EXPLAINED IN EASY UNDERSTANDING TERMS
IRQ CONFLICTS AND HOW TO SOLVE THEM
- IRQ Stands For Interrupt Request
- The IRQ have channels that are numbered and the devices use these channels to get the processors attention
Symptoms of IRQ Conflicts
- Crackling or other artifacts when playing back a project
- Your PC won't boot up. A horrible feeling!
- Your PC will lock up. Just as horrible!
- Corrupt files when transferring
- Not being able to browse your network
Causes of IRQ Conflicts
- They happen when more than one device shares IRQs
- IRQ conflicts can happen when you install new hardware or reconfigure hardware
How To Detect and Fix IRQ Conflicts:
- In Windows Click Start — Control Panel — System
- Click Hardware — Device Manager
- Click View — Resource from the drop-down menu
- Click the expansion box next to the IRQ icon. This will display a list of IRQ numbers assigned to them and a list of system devices.
- Right-click each device that has a conflict and select properties. When you're in the Properties window, click the resource tab to see if it has a conflicting device that has a reserved IRQ. If the option is grayed out or unavailable, then you cannot change the IRQ and reassign it to another one. If it's available, then you can re-assign it to a new available IRQ, If there is one.
Resolving IRQ conflicts with PCI cards or ISA cards:
- Manually move them to other available slots on your motherboard.
- By changing the slot, you change the IRQ channel.
SNARE DRUM RECORDING TIPS
- When recording the snare drum, first of all make sure your snare drums tuning pegs are tuned correctly. It's usually the drummer's call. He will know when it sounds and feels right. Your snare drum also has different sounds to it, depending on the location being hit by the drum stick. If your drummer is sloppy, take it into consideration and hit the snare head in all the different locations to check its sound.
- As far as Mic's go, there are many to chose from, but for this discussion, I'm suggesting the good ole SM-57 for the top of the snare head. Place it from a few centimeters to an inch above the edge of the snare head. You can get away with using just one mic, but why settle for good sound when you can have a great sound! So the bottom of the snare head must be Mic'd. Chose a mic that is good at picking up the mid-high to high frequencies, like an AKG 451B small diaphragm mic. Due to the small size of this mic, it's a great fit under your snare drum.
- When using 2 mics for the snare drum or any other instrument, you need to check the phase. If the Mic's are out of phase, you can try moving the position of one of the microphones to get both microphones in phase with each other. You may need to reverse the phase of one of the Mic's if you cannot get both Mics in phase with each other. These two Mic's together are a great match because the SM-57 is great for the low-mids to mid-range and the AKG is great for picking up the mid-high to high frequencies. It's a match made in "snare drum heaven".
EQ For The Snare Drum: (Note: These are just suggestions and guidelines, as nothing is written in stone. You must use your ears, as each song will need different EQ settings)
- Try using a high-pass filter set at 120Hz and under. 120Hz is a great starting point and then just slide the filter downward for the desired cut
- Boost between 150 - 300Hz. This will fatten the snare drum up for you
- Try cutting around 400 - 900Hz to eliminate some boxiness in the low end
- Boost between 5 - 7kHz for a crispness
- A boost between 9 - 15kHz will add some nice brightness to the snare. Just make sure it doesn't interfere with the vocals in that range
PEAK VS RMS LEVELS
KICK DRUM RECORDING AND MIXING TIPS
- To get a solid kick sound, you need to use a large-diaphragm mic. An example of a good kick drum mics is the AKG D112, the Sennheiser MD 421, and an Electro-Voice RE20. There are many microphones made for recording the kick drum and each mic will have its own flavor and will favor different frequencies over others. For example, if you want that "tick" sound of the kick drum pedal beater hitting the head, you would choose a mic that favors the lower mid-range and the upper frequencies as well.
Mic Position
- For a Tight Drum: (NOTE: There are countless ways to mic a kick drum) This technique does not use 2 heads. Remove the outer head and pace the mic inside the kick drum and position it at the batter head. The distance from the batter head depends on the sound you are going for. The closer you are to the batter head, the more impact and less resonance sound you get from that mic. Inserting a blanket or a foam pad inside the bottom of the kick drum will help dampen unwanted reflections. A good starting point for mic placement is about 5 inches inside the kick drum, slightly tilted towards the floor tom.
- For a Large and Live Kick Drum: To get large and live kick drum sounds, you should use 2 kick drum heads. The sound will sound more resonant with rich overtones. You may want to put a strip of cloth across both heads. This helps dampen overtones without destroying the boominess of the kick drum. Try placing your mic about 2 feet in front of the kick drum and have it point to the center of the head. You'll need to turn the pad setting on for the mic, or you may overload your signal. Some drummers have a front head with a hole that they cut out or bought. If this is the case, you can position the mic slightly inside the hole or aimed into the hole. Note, that having a hole in the outer head can cause an annoying ring to it. To fix this annoying issue, you can lay a foam pad or blanket against a section of the front head to remove the annoying ring without affecting the overall sound.
Signal Processing Tips
- You can compress the kick drum during the recording phase, but you do not have to. You can do all this after it is recorded into your DAW program of choice. When I process the signal during recording, I will generally use a compressor, EQ, and a noise gate. I'll compress with a threshold set to around -10dB below the highest peak with a moderate to fast attack and moderate release with a ratio set to 2:1. Then I'll boost around 100Hz to taste and then I'll run it through a noise gate, with the gate set up to close its gate after a few milliseconds after the kick sound. This will make the kick drum very defined and very stimulating. As I said before, you can do all that after it's recorded using the program of your choice.
Some General EQ Tips
- Less Boominess - Cut around 80Hz
- More Boominess - Boost around 80Hz
- More Thud - Boost around 1kHz
- More Click -Boost around 12kHz
- More Attack - Boost 5kHz
- Less Wallop - cut around 220Hz
- More Wallop - Boost around 220Hz
Kick Drum For Rock Music
- Use a double-headed kick drum
- If the kick is too boomy, try cutting 2 to 6dB at 80Hz and then another cut with 5 to 12dB at 200Hz. Use your ears to determine the amount of Db to cut
- After these cuts are made, you should not hear any boominess anymore. In fact, you should be hearing allot more of the head and way less resonance
- To add more "flap" boost between 2 to 10dB at 500Hz
- You can also boost a bit at 12kHz with a peak or better yet a shelving filter
A Long Tone kick DrumThis is for simulating the sound from the famed Roland TR-808 Long Kick. I strongly suggest you turn your monitors down a bit for these tweaks :)
- Boost between 8 to 10dB at 80Hz
- Cut between 8 to 10 dB at 300Hz
- Cut between 8 to 10dB at 1kHz
- Boost at 12kHz until it sounds good to your ears
- Add a hall reverb with medium pre-delay and a long decay for sustain. Perfect space IR reverb has a kick and snare preset. I suggest trying one of the kick presets and tweaking it to taste. If you don't have Perfect Space, any reverb that contains hall sounds is good
- Cut between 5 to 7dB at 80Hz to get rid of the boominess. The more boominess you have, the more dB you should cut at 80Hz, and the less boominess you have, the less dB you should cut at 80Hz.
- Boost between 5 to 7dB at 350Hz
- Boost between 3 to 6dB at 3kHz
- Boost a bit at 12kHz using a peak filter or shelving filter. The dB boosted is just to add a bit of presence to it, so not too much boosting
- You are going to need to compress with a medium attack, slow-release, a threshold set to taste, and the ratio set to around 4:1
WHAT IS GAIN STAGING
An example of a gain stageVoice to Microphone to Pre-amp to Compressor to Sound Card. With this normal vocal recording chain, you have 5 possible ways to change and alter the signal strength. The strength of your voice and the positioning of the mic to your mouth is a gain stage. The mic is also a gain stage because it can have pad settings on it. All these components affect the signal strength.
You have to experiment with many approaches to find what works best for you and your set-up. Note, that not every approach will work for every situation. You need to trust your ears. If you're getting a great sound and your settings don't look right, that's OK, as there are no rules to gain staging. Over time you will build confidence when setting up gain structures. Most important is to use your ears and do not clip your audio signal.
Things To Watch Out For
- If your input level is too high, The track fader may have to be set very low. This can make it too low to have control in the upper part. When your track fader is low, it's very difficult to adjust and fine-tune the audio levels.
- If your pre-amp level is too high, the signal can overdrive the sound card's input or the next gain stage in the signal path. Pre-amp settings are of utmost importance. A bad pre-amp setting will result in failure
- If your pre-amp level is too low, your track fader will have to be too high and you can get a bad signal to noise ratio.
MICROPHONES - ALL ABOUT THEM
SPL (sound pressure level) indicates that maximum volume. It can be found in the microphone's spec sheet. You can ruin an expensive mic by hitting it too hard and blowing and moving the diaphragm. Dynamic mics seldom have a max SPL rating. Condenser mics come with SPL rating because their built with electronic circuitry that can overload and that overload can cause audible distortion.
When you're trying to find the correct placement of your mic, you need to factor in the sound of the room. Putting the mic closer to the instrument will diminish the sound of the room (environmental interference). This kind of Microphone technique is called close Micing or tight Micing. A good technique is to place your ear directly to where the microphone is at and this will give you a perspective of what the mic hears and in return records..Each and every mic was built with a specific application intended for it. The characteristics of a mic help you decide what to use it for. Like the diaphragm size, the pick-up pattern and the frequency response. All those things along with an understanding of their specifications will affect your mic choice.
Pick-up Patterns
- Omnidirectional is a mic pattern that picks up all directions equally. It doesn't reject sound from any angle. For this characteristic, the omnidirectional mics are great for capturing room ambiance and groups of instruments. It is great for picking up sound from a distance. These mics are not for live use as they can produce feedback more easily than any other pick-up pattern.
- Bidirectional is a mic pattern that doesn't hear from the edges, but it hears equally from both sides. This mic is a great choice for recording two sound sources into one track by positioning the mic between the two sound sources. Another name for this is called the figure-eight pattern.
- Unidirectional and often called cardioid pickup or directional has a heart-shaped pattern with it most sensitive part being the part you sing into, facing the mic capsule. This mic is great for isolating sounds. Its great for when you're recording with a group of people. Because when you point the mic at one instrument, it will pick up less to none of the sounds from the other instruments in the opposite direction. The disadvantage of using this mic is you need to be up close to get the full sound. After 12 inches or more, your sound will get very thin compared to the sound you're recording with the mic. This mic is great for live sound as it produces way less feedback than other microphone patterns, such as the Omni and the Bidirectional.
- Cardioid has a full response at the front of the mic. It decreases in sensitivity of around 25 to 30dB at 180 degrees off-axis. This has the heart-shaped pickup pattern and as I said before, it's great for recording a single sound source when you have many sound sources in the same room. That's due to its pickup pattern. It's more sensitive in the front and not so sensitive in the back or anywhere else.
- Hypercardioid has a very high degree of upfront direction. It decreases around 10 to 14 dB on the sides and is less sensitive at 110 degrees off-axis.
- Ultra Cardioid has a very focused and directional pattern in the front. It also has a very small area of sensitivity at 90 degrees and at 180 degrees.
- Subcardioid has a much wider and extends more out front than the cardioid pattern. This pattern is close to a non-directional- omnidirectional mic.
The Three Basic Categories of Microphones 1.) Condenser Microphones are the most accurate of the three. They are more precise in responding to fast attacks and transients than any other microphone and usually add less tonal coloration than the other ones. Condenser mics can be a large diaphragm or a small diaphragm. You use a condenser mic when you need to capture the purest sound of a voice or instrument. Condenser mics need phantom power. Here are some popular condenser mics
- AKG 451,353, C1000, C3000, and C-12
- Neumann U47, U67, U87, U89, KM83 and KM84
- Shure KSM 27, KSM 32, KSM 44, KSM 141, and SM 82
- Sennheiser MKH 40 and MKH 80
- Audio-Technica 4033, 4041, and 4047
- Blue Microphones Cactus, Mouse, Dragon, Kiwi and Bluebird
In the Omni pattern, the condenser mic will capture a more precise broad range of frequencies at a greater distance than the other two mics. This trait is the reason the condenser mic is widely used in the recording studio because it can capture the sound source and some of the room ambiance. The further the sound source, the more natural room ambiance it picks up.
2.) Ribbon Microphones by far are the most fragile of all the mics and for this reason alone they are the least popular choice for live use. The capsule in the ribbon mics are bidirectional. The front and back are equally sensitive as the sound from the 90 degrees off-axis cancel out. If a ribbon mic has its back enclosed and it becomes unidirectional. Ribbon mics have a characteristic of having a warm and smooth sound with close-mic recording. When used at a distance, these mics sound thin. Do not drop a ribbon mic. Handle them with extreme care Here are some popular ribbon mics
- Royer SF-12 and SF -24
- RCA 77-DX and 44-BY
- Beyer M160 and M500
3.) Moving Coil Microphones (Dynamic Microphones) got their name because they are made with a movable induction coil. This coil is inserted in the magnetic field of a magnet that is attached to the diaphragm. Moving coil mics do not really do good in capturing transients, but they are the most durable mic out of the three types. As for being the most durable, they are can also endure the most volume before they start to distort the audio signal. With that said, this mic are optimal for live use cause they tend not to feedback as easily as the other 2 types.Moving coil mics color the sound more than a condenser mic. The frequencies affected by this coloration are generally between 5kHz and 10kHz. That frequency range is known to add edge, clarity, and presence to its sound sources, like vocals and guitar. When placed more than a foot away from the sound source, these mics will have a thin sound. With that said, these mics should be used for close mic-ing situations. Here are some popular moving coil mics
- Shure SM7, SM57, and SM58
- Sennheiser 441 AKG D12, D112, and D1000E
- Beyer M88
COMPLIMENTARY EQ TECHNIQUES
Complimentary EQ techniques will make it so you can hear both of these instruments clearly in a mix, by cutting unwanted & unused frequencies and boosting certain key frequencies that were cut in the other tracks.
For example:I will use the Bass Guitar and Kick Drum for this example since I always see questions about these two. Let's say I boost the kick at 65Hz and 2kHz and then cut at 250Hz. Now since I boosted those 2 frequencies for the kick drum track, I will cut those 2 frequencies in the bass guitar track and then boost the bass guitar at 250Hz.I did the complete opposite in both tracks. If I boost 65Hz in the kick drum track, I will cut 65Hz in the bass guitar track. If I cut 250Hz in the kick drum track, I will boost 250Hz in the bass guitar track. Note: these frequencies I'm cutting and boosting are only examples and these may not be the frequencies you should cut and boost in your mixes. Each mix will be different.
You also cut out all the frequencies in each instrument that is not neededFor example:A vocal track normally doesn't use any frequencies below 80Hz to 100Hz, so you can set a high pass filter so it cuts everything below 80Hz to100Hz. You do this for every single track in your project and you will have a clearer mix that is less muddy and a mix that you will be able to make hotter since all the unwanted frequencies are cut out of it.
WHAT IS THE SAMPLE RATE
- The Sample rate is the number of times per second that a recording platform will digitize the incoming sound or it can convert the digital sound back to an analog signal. It can do those 2 things.
- The standard sample rate for CD format is 44.1kHz. (44,100 samples per second) If you are recording at 48, 88.2, 96, or 192kHz, you must convert your sample rate to 44.1kHz if you want to burn your song to the CD.
- The standard sample rate for video is 48kHz (48,000 samples per second) The greater the sample rate, the more accurate your recording program will capture your sound. But if your target media is going to be CD and MP3, then recording at 44.1 or 48kHz is suggested.
- According to the Nyquist Theorem, the highest frequency a system can handle is equal to half its sample rate.
BIT DEPTH EXPLAINED (AKA BIT RATE)
- The Bit Depth will determine how many values are available to describe the amplitude level of an audio signal being recorded at any given moment. The number of bits determines the resolution of each and every sample. The more bits, the greater the resolution and the better the sound quality.
- Just like the sample rate, the more bits used to capture a sound, the more accurately the sound will be represented.
- Anything under 16bits is not considered professional. CD standard is 16bits 44.1kHz.
The recommended bit depth to record at is 24bits. Recording in 24bits will give you 256 times the resolution of 16bit recording. Even when you convert the 24bits to 16bits for CD burning, you will not lose the effects of originally recording in 24bit.To convert from 24bit to 16bit, you need to apply dither to it.
Floating Point Bit Depths32-bit floating-point processing means that after you record your audio at 24bit, you can convert it to a 32bit floating point. This means that it will add the extra bits after it is recorded. These extra bits that get added onto the file after it's recorded, will give you more headroom for processing (audio calculations)... I always convert all my files to a 32bit floating point when working with my client's audio.Having 32 bits, rather than 24bits is going to render a more accurate result. Some recording platforms do not have this option yet.
WHAT THE HECK IS DITHER
Dithering should only be applied at the very last stage of the mix, when you're going from a higher bit depth to a lower bit depth. Like going from 24bit to 16bit. This goes for fixed point and floating point bit depths. If you are in 16bit and you have a plugin that processes your audio signal with a 64bit floating point engine, you need to dither upon mix down of that track or mix.You do not dither when you go from a lower bit depth to a higher bit depth. You only need to dither when going down in bit depths. So, if you go from a 24bit to 32bit floating point, you do not need to dither.
WHAT IS A WORLD CLOCK
CHOIR RECORDING TIPS
Monitoring: If the music is pre-recorded, an FM transmitter can be fed by your headphone mix and then this is fed to your FM transmitter. The choir would plug their headphones into their portable radio and dial into the correct frequency. I think this is the cheapest way to have a large group of people hear a pre-recorded mix. It cost between $100 and $200. All you need to do is ask each choir member to bring their own portable FM radio.
Arranging Your Singers: You should separate the altos, sopranos, tenors, and basses into separate sections and then spread them out left to right. If the choir has a conductor, it will be his job to position the choir members
Mic Placement: The most important and hardest thing is having your mics at an equal distance from each other. Microphone placement is crucial as you don't want to hear one voice more than the others. You want to hear the choir as one.
These are the 3 most popular stereo mic techniques for recording a choir.The choir should be in a U shaped or half-moon shaped circle for these techniques.
- ORTF Stereo - This uses 2 direction microphones, that point away from each other. It makes a wide V shape
- XY Stereo - This uses 2 directional microphones angled at 90 degrees with one capsule over the other
- Spaced Omni Stereo - This uses 2 omnidirectional microphones spaced far apart. This is for larger groups
WHAT IS A FLANGER EFFECT
Flanging occurs when delay times go into the millisecond range and into the single digits. One way to describe flanging is to say it's like a whooshing sound or a sound a jet airplane makes. The sound it makes is a kind of filtering or resonance that moves audibly up or down in frequency. The way it moves depends on what's going on with the modulation. Let's say a sound source is delayed by 6 milliseconds and then you combine that with the source sound, especially when feedback is added, some frequencies cancel each other out. This will result in a pattern of peaks and valleys across the frequency spectrum. When you apply modulation, the delay time can either shorten or lengthen and in return, the patterns of the peaks and valleys will shift up or down.The shifting you hear is the flanging you hear. As the delay times shorted, the flanging will appear to go up and when they lengthen, the flanging can seem to go down.
By touching the flange on any of the tape machines, it would make the machine slow down, hence causing the delay to change in one direction and this will also change the way the sound reacts with one another. This technique is considered true flanging because it allows 2 sounds to cross in time. Flanging is a kind of spatial effect that has a distinctive sound. This sound can be so bold, that’s it is easily over-used. If you were to record a 12 song album or CD, you should only use the flanger in one or maybe 2 songs. Any more than that and its overkill.
GET YOUR CD TEXT TO SHOW UP IN YOUR CAR & PC
In order for your PC to display this CD Text, you need to submit it to the Online CD Data Bases. (the people who developed the computer software screwed up when programming the coding and this is why it doesn't automatically show the CD Text.).
These online databases include
- Gracenote - this is what iTunes and a few other programs use
- AMG Lasso - this is what Windows Media Player uses
- Freedb - a number of other programs use
- MusicBrainz - a number of other programs use
- Gracenote - http://www.gracenote.com/company_info/FAQ/FAQs/#5a
- AMG Lasso - http://allmusic.com/cg/amg.dll?p=amg&sql=32:amg/info_pages/a_product_submissions.html
- Freedb - http://www.freedb.org
- Musicbrainz - http://www.musicbrainz.org
HOW TO CREATE A GOOD STEREO IMAGE
For example, panning instruments hard left and hard right. This goes especially for guitars and drum toms.Another way is to pan them from the drummer's point of view. The kick drum would be dead center, right in the middle of the mix. The snare drum would be left of center and the hi-hat will be placed slightly to the left of the snare drum. You would place the toms and cymbals exactly how they would appear on the drum set. Then the guitars would be panned at around 10 and 2 o'clock and the vocals and bass would be right up the middle. The background vocals would be placed just right in the center. In this way, you have all your important information in the center and in mono and your supporting cast would be on the outside. Just remember, this is not the only way to do it, as the stage can hold a wide variety of musicians that are playing instruments.
You also use an effect like reverb and delays to create a good 3D stereo image of your mixUsing these effects, along with panning can place each instrument in its own stereo field and you can place them not only left, right, and center, but you can place them back left, back right, back center, front left, front right, front center, med front left, mid-front back and so on. This is what makes a great 3D stereo field.
Please Note: There are no set rules, just like everything else in mixing. So regardless of where you place each instrument, it's very important to maintain an accurate representation of all the instruments. Just keep in mind that when you pan instruments hard left and hard right, you can introduce phasing problems when the mix is played in mono or pseudo-stereo.